Atmosphere

CIWRF: modifying WR to make it even more usefull for Regional Climate modelling Dr Lluís fita I.fitaborrell@unsw.edu.au

UNSW

J. Fernández, M. García-Díez (UC, Spain) J.P. Evans, C. Carouge (CCRC, Australia) Climate Change Research Centre

www.ccrc.unsw.edu.au

Ocean

Land

Outline

- WRF model and regional climate modelling _ Why clWRF?
- clWRF contents (present day)
 - GHG gases concentration
 - Surface extremes from internal time-steps
 - 'Heavy staff': gust winds
 - Additional values on time-series outputs
- clWRF what's next?
 - CCRC modifications: 5,10,20,30,1H wind and temp. extremes, GHG on rrtm
 - CORDEX variables?
 - New WRF output using ASCII variables external file
 - Other RCM needs?

WRF and regional cliamte modelling

- Although WRF-ARW was conceived for (web page):
 - Idealized simulations (e.g. LES, convection, baroclinic waves)
 - Regional and global applications
 - Parameterization research
 - Data assimilation research
 - Forecast research
 - Real-time NWP
 - Hurricane research
 - Coupled-model applications
 - Teaching
- WRF lacked of some 'specific' regional climate modelling capabilities

Climate Change Research Centre

WRF and regional climate modelling

- Regional climate drawbacks of WRF (before clWRF...)
 - Green House Gases (GHG) concentrations 'fixed'
 - CAM radiation scheme has A2 CO2 evolutions prescribed in the code
 - No changes in other gases
 - No flexibility to use other scenario concentration evolution
 - Inconsistency between WRF output (instantaneous values) and surface minimum/maximum temperatures/winds/... (given from minute measurements)
 - CORDEX require new variables that they can not be computed using standard WRF output, such as: sunshine length, wind-gusts, surface downward East/Northward wind stress,...
- It was necessary to tackle these issues... even if did mean that WRF code should be modified... :)

clWRF. Improving WRF utility for RCM

- In the frame of the Spanish ESCENA project, Universidad de Cantabria was pioneering the use of WRF model for Regional Climate Modelling in Spain
- Most of the WRF climate-drawbacks had to be fixed → clWRF (Fita et al., 2010, 11th WRF workshop)
- Modifications have to be easily introduced and easy to activate/deactivate
- http://www.meteo.unican.es/wiki/cordexwr f/SoftwareTools/ClWrf

clWRF. 'Light' modifications

- Measured accumulations of precipitation differ in each country... 8 to 8, 7 to 7, ...
 - Include precipitation in auxiliar output #4 to define new daily accumualtions
- Compilation activation:
 - In order to know which version of WRF is running, a message has been added in WRFV3/main/module_wrf_top.F
- All clWRF modifications in the code have #CLWRF comments in [file].F source code files

- CAM lw/sw radiative scheme had included (v3.1) the evolution of CO2 concentrations
 - Fixed in the code as a Fortran data statement (only A2)
- **Design/purpose**:
 - Introduce flexibility on the GHG temporal evolution, more scenarios, sensitivity studies...
 - Use an external ASCII file as the input of the GHG concentrations

- Activation during the compilation when -DCLWRFGHG is used
- Two modules have been modified:
 - -WRFV3/phys/module_ra_cam_support.F
 - Necessary modifications to avoid the use of the prescribed A2 values
 - -WRFV3/phys/module_ra_cam.F
 - Reading of the values from external ASCII file (Fortran fixed format)
 - Linear interpolation using the Julian day of the year

- An external ASCII file is read with the evolutions of the concentrations of the GHG
 - CAMtr_volume_mixing_ratio: External ASCII file
 - CO2, CH4, N2O, CFC-11, CFC-12. A missing value can also be used
 - Flexibility on temporal frequency
 - Any scenario
 - Any sensitivity test
- Two new files for RCP 4.5 and 8.5 have been already prepared to be used... soon in the web page!

4N20

4CO2+4N2O+4CH4+4CFC1N 4CO2

temp

4CH4

precip

clWRF. Extreme values

- Extreme values have to be computed using internal time-steps (temporal frequency at which equations are solved)
- Much more closer to reality/measurements
- New set of diagnostic/modules have to be introduced
- Significant modifications on WRF code
- Introduction of new variables in WRF output... modify Registry. EM file...

clWRF. Extreme values

- Activation in compilation with -DCLWRFXTR
- Activation in namelist with output_diagnostics
- Modification of:
 - _WRFV3/dyn/solve_em.F
 - Call to a new module (subroutine) with the computation of the extremes
 - WRFV3/phys/module_diagnostics.F
 - New subroutine clwrf_output_calc
 - _ Registry/Registry.EM
 - Definition of new statistical variables
 - Extreme values to be written in auxiliar output #3

clWRF. Extreme values

2m Temperature

2m Mixing ratio

clWRF. CORDEX variables

- Activiation during the compilation using -DCLWRFHVY
- Two additional variables have been included: sunshine length and gust wind with additional ones related to moving/fixed temporal accumulations
 - Sunshine length: accumulated period of short-wave radiation above 120 Wm2 (WMO)
 - _ Wind-gust: following Brasseur, 2001
- Modification of:
 - _dyn_em/solve_em.F
 - Call to new specific subroutine
 - _phys/module_diagnostics.F
 - New subroutine diagnostic_clwrf_clim for: sunshine, wind-gust, precipitation accumulations
 - _share/output_WRF.F

Inclusion of some definitions for restart purposes
 Climate Change
 Research Centre

clWRF. CORDEX variables

- Some variables are computationally expensive
- Activation with independent namelist.input variables
 - clwrf_sunshine: sunshine
 - clwrf_gust_wind: gust wind
 - clwrf_accum_precip: accumulated precipitations
 (moving/fixed)
 - timesteps1_movaccum: number of time-steps
 - Fixtimeaccum: fixed accumulation (total seconds)
- Output written in auxiliary output #5

clWRF. Extra variables

- Accumulated maximum moving precipitations
- modification of:
 - _WRF/phys/module_diagnostics.F:
 - Computing new accumulated values. A vector of accumulated precipitations is used (t timesteps1_movaccum 1, ..., t-dt, t)
 - $accum(t) = \Sigma raintot (t-timesteps1_movaccum: t)$
 - _Registry/Registry.EM:
 - Addition of new variables. Definition of new dimension for the vector with the period of accumulation

_ WRFV3/Registry/registry.dimspec_CLWRF:

- Addition of the new dimension 'mov' of size timseteps1_movaccum
- NOTE: It is not working with restart files Climate Change

Research Centre

clWRF. CORDEX variables

Sunshine

radt = 30

radt = 0

clWRF. CORDEX variables

Moving accumulated precipitation

30 minutes MAXMOVACCUM

Climate Change Research Centre

clWRF. Extra variables

- New variables can be outputted in the time-series ASCII files (tslist)
- Variables related to planetary boundary layer studies which are usually measured a very high temporal resolution on a unique place
- modification of:
 - _ WRF/share/mediation_integrate.F: Call to new I/O
 time-series subroutine

_WRF/share/time_series.F:output of new variables: pblh, tkesfcf, ust, rmol, mol, regime, ck, cd, capg, thc

 Activation in namelist.input using variable: clwrf_ts_pbl

clWRF. Extra variables

clWRF. Summary

clWRF	Compilation flag	namelist option	# Aux output
extremes	Already in WRF	output_diagnostics	3
GHG assimilation	-DCLWRFGHG		
sunshine	-DCLWRFHVY	clwrf_sunshine	5
gust wind	-DCLWRFHVY	clwrf_gust_wind	5
time moving acc.	-DCLWRFHVY	clwrf_accum_precip timesteps1_movaccum fixtimeaccum	5
Add. time-series	-DCLWRFHVY	clwrf_ts_pbl max_ts_locs (&domains)	

- All namelist options in &time_control section
- Compilation options are declared in configure.wrf file (example, following line after -DNETCDF), and related to the pre-processor following -D[flag]

Climate Change Research Centre

clWRF. What's next?

- Climate Change Research Center (C. Carouge)
 improved/enhanced clWRF modifications
 - External GHG ASCII file input in rrtm radiative scheme
 - New accumulated precipitation and wind maximum values for 5,10,20,30 minutes and 1H
 - Internal re-code of certain parts of the clWRF.
 New module
 - NOTE: This modifications are NOT in clWRF modifications from *Universidad de Cantabria*.

clWRF. What's next?

- clWRF specific:
 - _ Coordinated effort. We are waiting your contributions/ideas !
 - 92 users (Sep. 21st 2012)
 - _ clWRF generalization GHG gases and extreme variables
 - _ GHG ASCII file reads need to be moved to module_ra_cam_support.F
 instead of module_ra_cam.F
 - _ New CORDEX variables to be included? Surface downward East/Northward Wind Stress
 - _ Need to converge clWRF and CCRC modifications in WRF 3.4 and beyond. CORWES task?
 - _ clWRF (only extreme values) in WRF code since v3.3.1
 - Explore utility of external ASCII files for the output variables as a way to compute new extreme/statistics values (WRF developers? J. Dudhia) e.g.:
 - +:h:0:[stat]:RAINC,RAINNC [stat]=n,x,m,s
 - _ Main goal: Include all clWRF in standard WRF code

clWRF. What's next?

- Does the Regional climate modelling community need more new capabilities from WRF?
- Time to talk and plan !
- Possible schedule:
 - i. Open a clWRF track/repository/forum system
 - ii. Converge clWRF with CCRC in 3.4
 - iii.Push clWRF to standard WRF code (R. Leung + J. Dudhia)
 - iv.Introduce new features (following a standard methodology, specific compilation flag and namelist option). Users have to be able to run WRF wihout any modification

