

NARCliM: NSW/ACT Regional Climate modelling project Dr Lluis fita I.fitaborrell@unsw.edu.au

J.P. Evans, D. Argüeso Barriga

Land

Atmosphere

Outline

- Austral-Asia CORDEX community

 Groups and on going projects
- NARCliM. A regional climate model ensemble

 Choosing the Global Climate Models
 Choosing the Regional Climate Models
- What output will be produced?
- Questions

Austral-Asia CORDEX community

- NARCliM project (led by Jason P. Evans, Climate Change Research Center, NSW, Sydney Australia)
- Perth WRF-CORDEX project (led by Prof. Tom Lyons, Murdoch University, Perth, Western Australia, in "collaboration" with UNSW-CCRC, J. Kala):
 - Currently running: ERA interim, [1981-2010], CSIRO Mk3.5 GCM, [1970-1999] and [2030-2059] A2 scenario.
 - _ Future: ECHAM5 and MIROC3.2, [1970-1999] and [2030-2059] A2 scenario
- UNSW WRF-CABLE: (led by A. Pitman, ARC Centre of Execelence for Climate Sciences, Sydney, Australia)
 - _ Currently running: ERA interim, [1981-2010]
 - _ Future: CSIRO3.5, ECHAM5, MIROC3.2
- COSMO-CLM(-CLandM) Australia (led by M. Demuzere, Regional Climate Studies Group from the Earth and Environmental Department, KU Leuven, Belgium)
- CCLM (= COSMO-CLM) Australia (led by B. Rockel, Institute of Coastal Research / Helmholtz-Zentrum Geesthacht, Germany)
- Wiki-web page: http://cordex-australasia.wikidot.com/start

NARCIIM. Outline

- NSW / ACT regional climate projections
- Adaptation to climate change on NSW and ACT
- Steering committee combination of government agencies and Scientists
- ENSEMBLE of 12 simulations:
 - 4-GCMS (A2 scenario)
 - 3-WRF configurations
 - 3 time-windows: 1990-2010, 2040-2060, 2060-2080
 - Control period: NCEP re-analysis 1950-2010
 - 2 domains: AUS-44 (CORDEX, 50km), NSW/ACT (10km)

NARCIIM. Sterring Committee

- NARCliM designed by stake-holders and researches
 - 6 NSW and 2 ACT gov. agencies & CCRC (id J. Evans)
 - Ensure involvement of government agencies
 - Meet specifications end-users
 - Mutual interaction researchers-government
 - Ensure exploitation of results
 - Increase control of process/execution

NARCIIM. Sterring Committee

- Faced issues:
 - Understanding of the technical challenges
 - Re-adjustments in the schedule
 - Variables required
 - − File formats: netCDF → ASCII, CVS, GIS...
 - Projection issues
 - Acquisition of climatological 'knowledge'
 - Data management (600 TB)

NARCIIM. Experiment setup

- Two domains of simulation
 - CORDEX AUS-44 as mother domain (50 km)
 - NSW/ACT (South-East Australia) at (10km)
 - Continuous runs (60 yrs for control runs, 20 yrs for GCMs)
 - SRES A2
 - 1 month spin-up
 - WRFv3.3 with clWRF+CCRC modifications
 - Spectral nudging on first domain

Choosing GCMs

- A literature revision of all the analyses of the CMIP3 models for Australia was made
 - Addition of new studies into Meta-analysis of Smith & Chandler (2010)
 - 11 studies (A to K)

• A combined metric with the results of the studies was made

Assessment region		Australia						MDB	MDB		SE Australia	
Model	Frac. Dem.	A	В	С	D	E	F	G	Н	I	J	К
GFDL-CM2.0	0.125	0	yes	2	671	yes			no	yes		252
EFCHAM5/MPI	0.222	0	yes	1	700	yes			no	no	0.79	173
NCAR CCSM3	0.273	0	no	2	677	no	4	6	no		0.68	245

Choosing GCMs. Independence

• An independence selection criteria (Abramowitz and Bishop, 2010) ranks all GCMs

Choosing GCMs. Independence

- A measure of model independence based on the correlation of model errors.
- After some fancy maths we obtain an estimate of the independence of each model and hence a number of effective models.

Choosing GCMs

 Projected future changes in precipitation and temperature are used to group GCMs together

miroc3_2_medres0.35250.03640.38891ukmo_hadgem10.13610.06940.20552inmcm3_00.16050.04360.20413gfdl_cm2_00.07290.10780.18074mpi_echam50.07040.09210.16255mri_cgcm2_3_2a0.06240.08470.14706miub_echo_g0.08680.04140.12827gfdl_cm2_10.02900.07990.10908cccma_cgcm3_10.02330.07330.09669ukmo_hadcm30.03110.06020.093210csiro_mk3_50.00590.08600.091911csiro_mk3_00.03980.05030.090112	models	temperature	precipitation	average	rank
ukmo_hadgem10.13610.06940.20552inmcm3_00.16050.04360.20413gfdl_cm2_00.07290.10780.18074mpi_echam50.07040.09210.16255mri_cgcm2_3_2a0.06240.08470.14706miub_echo_g0.08680.04140.12827gfdl_cm2_10.02900.07990.10908cccma_cgcm3_10.02330.07330.09669ukmo_hadcm30.03310.06020.093210csiro_mk3_50.00590.08600.091911csiro_mk3_00.03980.05030.090112	miroc3_2_medres	0.3525	0.0364	0.3889	1
inmcm3_00.16050.04360.20413gfdl_cm2_00.07290.10780.18074mpi_echam50.07040.09210.16255mri_cgcm2_3_2a0.06240.08470.14706miub_echo_g0.08680.04140.12827gfdl_cm2_10.02900.07990.10908cccma_cgcm3_10.02330.07330.09669ukmo_hadcm30.03310.06020.093210csiro_mk3_50.00590.08600.091911csiro_mk3_00.03980.05030.090112	ukmo_hadgem1	0.1361	0.0694	0.2055	2
gfdl_cm2_00.07290.10780.18074mpi_echam50.07040.09210.16255mri_cgcm2_3_2a0.06240.08470.14706miub_echo_g0.08680.04140.12827gfdl_cm2_10.02900.07990.10908cccma_cgcm3_10.02330.07330.09669ukmo_hadcm30.03310.06020.093210csiro_mk3_50.00590.08600.091911csiro_mk3_00.03980.05030.090112	inmcm3_0	0.1605	0.0436	0.2041	3
mpi_echam50.07040.09210.16255mri_cgcm2_3_2a0.06240.08470.14706miub_echo_g0.08680.04140.12827gfdl_cm2_10.02900.07990.10908cccma_cgcm3_10.02330.07330.09669ukmo_hadcm30.03310.06020.093210csiro_mk3_50.00590.08600.091911csiro_mk3_00.03980.05030.090112	gfdl_cm2_0	0.0729	0.1078	0.1807	4
mri_cgcm2_3_2a0.06240.08470.14706miub_echo_g0.08680.04140.12827gfdl_cm2_10.02900.07990.10908cccma_cgcm3_10.02330.07330.09669ukmo_hadcm30.03310.06020.093210csiro_mk3_50.00590.08600.091911csiro_mk3_00.03980.05030.090112	mpi_echam5	0.0704	0.0921	0.1625	5
miub_echo_g0.08680.04140.12827gfdl_cm2_10.02900.07990.10908cccma_cgcm3_10.02330.07330.09669ukmo_hadcm30.03310.06020.093210csiro_mk3_50.00590.08600.091911csiro_mk3_00.03980.05030.090112	mri_cgcm2_3_2a	0.0624	0.0847	0.1470	6
gfdl_cm2_10.02900.07990.10908cccma_cgcm3_10.02330.07330.09669ukmo_hadcm30.03310.06020.093210csiro_mk3_50.00590.08600.091911csiro_mk3_00.03980.05030.090112	miub_echo_g	0.0868	0.0414	0.1282	7
cccma_cgcm3_10.02330.07330.09669ukmo_hadcm30.03310.06020.093210csiro_mk3_50.00590.08600.091911csiro_mk3_00.03980.05030.090112	gfdl_cm2_1	0.0290	0.0799	0.1090	8
ukmo_hadcm30.03310.06020.093210csiro_mk3_50.00590.08600.091911csiro_mk3_00.03980.05030.090112	cccma_cgcm3_1	0.0233	0.0733	0.0966	9
csiro_mk3_50.00590.08600.091911csiro_mk3_00.03980.05030.090112	ukmo_hadcm3	0.0331	0.0602	0.0932	10
csiro_mk3_0 0.0398 0.0503 0.0901 12	csiro_mk3_5	0.0059	0.0860	0.0919	11
	csiro_mk3_0	0.0398	0.0503	0.0901	12
ncar_ccsm3_0 0.0091 0.0726 0.0817 13	ncar_ccsm3_0	0.0091	0.0726	0.0817	13
cnrm_cm3 0.0061 0.0513 0.0575 14	cnrm_cm3	0.0061	0.0513	0.0575	14

- GCMs that perform well and are independent based on present data, and that span the future changes projected by all GCMs are chosen. The first 4 GCMs were not available to run WRF, second set is used
- Final selection: MIROC, ECHAM5, CCCMA, CSIRO mk3.5

Choosing RCMs

- 36 WRF model configurations are tested: cu, mp, lw/sw ra and pbl
- 7 precipitation + 1 extreme fire weather events are used (J. Evans, 2011)
- Analysis is based on gridded observed: precipt., min/max temp. and sfp
- Independence criteria is also applied

	WRF	pbl/sfclay	cu	mp	sw/lw rad	
	R1	MYJ/ETA	KF	WDM5 class	Dudhia/rrtm	
	R2	MYJ/ETA	BMJ	WDM5 class	Dudhia/rrtm	
	R3	YSU/MM5	KF	WDM5 class	CAM/CAM	
ate	Change Research	e Centre				

Output

- Output will meet CORDEX specifications
- Modified/enhanced version of post-process from Universidad de Cantabria, Santander, Spain
- Issues with projection and visualization
- Web portal with open access for data delivery will be developed at the end of the project CliMDDIR website www.climddir.org

Preliminary control-period results

- NCEP re-analysis driven simulations (1950-2009)
- Validated with AWAP gridded observationalbased (Bureau of Meteorology, 5 km resolution entire Australia)
- Mean precipitation, minimum and maximum temperature for both domains.

- Overestimation of pr
- Orographic effect
- Better results for R2 (uses BMJ) instead of KF
- Better results for higher resolution domain

bias precip. 1950-2009

10*5

Climate Change Research Centre

mm/month

- Opposite when CAM & YSU/MM schemes are used
- North-South gradient
- No clear orographic influence
- Small improvement in higher resolution

-7

-3

5

Climate Change Research Centre

ĸ

-11

bias max T 1950-2009

20'8

2015

40*5

-3

- Underestimation
- Light differences
 between runs
- Overestimation in Northern tropical coastal-line
- Small improvement in higher res.

125"E 130"E 135"E 140"E 145"E 150"E 155"E

10*5

20*5

30*5

40*8

10k R1

120'E

135°E

-7

150°E

105°E

-11

1307E 1357E 1407E 1457E 1507E 1557

TABLE TABLE TABLE TABLE

5

9

- Temporal evolution is analyzed in a lat/lon box area
- Spatial averaged values are computed for the entire area
- Temporal smoothed time-series are computed using a 12-month moving average filter
- Evolution of differences with observation are presented

* Overestimation all simulations
* No differences
between domains
* Increasing trend
in all runs
* Best results with
R2 (BMJ)

* Differences between R1,R2 (MYJ/ETA) and R3 (YSU/MM5) * No differences between resolutions * Improvement on time * WRF runs with different trend than re-analysis

* Underestimation * Best results from re-analysis * Best results with R3 (YSU/MM5) * Wider variability

CONCLUSIONS

- Steering committee as mixture of scientists and stakeholders positive for all the aspects of the project
- Preliminary results show:
 - Improvement from NCEP
 - No single best configuration for WRF
 - Spatial differences on bias
 - Temporal evolution on differences with observations
 - Consistent bias for max. temperature
 - **BMJ better for precipitation**
 - YSU/MM5 better for temperature
- More information: http://www.ccrc.unsw.edu.au/NARCliM/

