THE CORDEX-WRF initiative in France: simulations, problems and ongoing work

S. Bastin, P. Drobinski, E. Flaounas, K. Beranger, A. Colette, K. Goubanova, C. Lebeaupin-Brossier, L. Menut, R. Vautard.

IPSL; LEGOS; INERIS; ENSTA

A french collaborative effort

- 4 CORDEX domains (Africa, Europe, Mediterranean, South America) with different scientific objectives
- Discussions on the set up, the choice of parametrizations, compilation and perfomance, CORDEX requirements, initialisation with IPSL GCM
- A common project to the National Center of Intensive Computing Agency for computing ressources request
- A new coupled model developped for Mediterranean domain: MORCE

AFRICA

<u>Simulations</u>: RRTMG, WSM5, YSU, KF, RUC.
To be discussed: how to manage aerosols and land use?

REGION	MODELE REGIONAL	Résolution	GCM forcing	Evaluation	Control period	Scenario 2006-	Status	Groupe
				1989-2008	1951-2005	2100		
AFRIQUE	WRF avec nudging	50km	ERA-Interim				Terminé	IPSL
AFRIQUE	WRF sans nudging	50km	ERA-Interim				Terminé	IPSL
AFRIQUE	WRF	50km	IPSL-CM5AMR-1				1970-2005 En cours	IPSL

- Scientific objectives
 - Mecanisms of the monsoon onset with focus on the role of Indian monsoon onset (Flaounas et al., 2011)
 - Intraseasonal and interannual variabilities of West African Monsoon with special focus on surface-atmosphere interactions (Gulf of Guinea and continental surface)

AFRICA-illustration: impact of Indian monsoon

From Flaounas et al., 2011

AFRICA-illustration: impact of Indian monsoon

EUROPE

<u>Simulations</u>:

REGION	MODELE REGIONAL	Résolution	GCM forcing	Evaluation	Control period	Scenario 2006-	Status	Groupe
				1989-2008	1951-2005	2100		
EUROPE	WRF	50km	ERA-Interim				Terminé	IPSL+INERIS
EUROPE	WRF	50km	IPSL-CM5MR-1				Terminé 1971-2005	IPSL+INERIS
EUROPE	WRF	50km	IPSL-CM5MR-1			RCP4.5	Terminé	IPSL+INERIS
EUROPE	WRF					RCP8.5	En cours 2006-2060	IPSL+INERIS
							actuellement	
EUROPE	WRF	12km	ERA-Interim					IPSL+INERIS
EUROPE	WRF	12km	IPSL-CM5AMR-1				Terminé 1971-2005	IPSL+INERIS
EUROPE	WRF	12km	IPSL-CM5AMR-1			RCP4.5	En cours 2006-2060	IPSL+INERIS
							actuellement	

- <u>Scientific objectives</u>: Evaluation of regional climate simulations for air quality modelling purposes
- <u>Methodology</u>:
 - Investigate the changes in the statistics of meteorological variables when moving from reanalyses-forced to GCM-forced regional climate simulations.
- <u>Publications</u>: Colette et al., GRL, 2012; Vautard et al., in revision to Clim. Dyn. 2012; Menut et al., AGU 2011.

EUROPE

- 50km x 50km horizontal resolution \rightarrow 119x116 grid points
- 32 vertical levels
- Noah →LSM
- GRELL \rightarrow convection scheme
- YSU → PBL scheme

Mean values and biases of 2m temperature

The bias is low between E-OBS and ERAi and shows that the ERAi modelled temperature is the best field for analysis. WRF forced by ERAi induces a bias of +-8K.

IPSLcm has itself a bias of +2 to -10K. Finally, due to errors compensation the WRF-IPSLcm exhibits a bias of +2 to -10K.

Synthesis of all differences between the model configurations and expected impact on air quality.

Parameter	WRF-IPSLcm / WRF-ERAi	Expected impact on air quality
Mean values	S	
T2m	< (-4K winter, -1K summer)	Less biogenic emissions, less photochemistry
WS	> 0.5m/s (winter) and < 1 m/s (sum-	Low impact, less natural particles emissions in
	mer)	summer
BLH	> (+20%)	More dilution, less surface concentrations
SWR	> (+10%)	More photochemistry, more ozone
RAIN	> (+1mm/day)	More scavenging, less pollutants in the atmos-
		pheric column (gas and particles)
Variability a	and extremes	
T2m	\approx	Negligible impact
WS	<	More stagnation episodes
SWR	>	More fluxes leading to more photochemistry

- Focus on extreme events: heat wave/droughts, heavy precipitation/flash floods, strong winds/deep oceanic convection
- Development of a new coupled model: MORCE (Drobinski et al., 2012) coupling WRF, an ocean model (NEMOD-MED 12), a new SLAB with dynamical vegetation (ORCHIDEE)

• <u>Simulations</u>: YSU, WSM5, RUC, RRTMG

REGION	MODELE REGIONAL	Résolution	GCM forcing	Evaluation	Control period	Scenario 2006-	Status	Groupe
				1989-2008	1951-2005	2100		
MEDITERRANEE	WRF	50km	ERA-Interim				Terminé	IPSL
MEDITERRANEE	WRF	20km	ERA-Interim				Terminé	IPSL
MEDITERRANEE	WRF-NEMO	20km	ERA-Interim				Terminé	IPSL
MEDITERRANEE	WRF	20km	IPSL-CM5AMR-1				Terminé 1989-2005	IPSL
MEDITERRANEE	WRF	20km	IPSL-CM5AMR-1				En cours fin prévue	IPSL
							mars 2013	

A *more realistic SST* in CPL with a cold anomaly induced by mistral and local circulation

Evaporation and wind speed are decreased in the coupled simulation Coupling role for intense precipitation:

direct effect over sea (less rainfall over cold area)

indirect effect over land (modulation of the low-level jet supply and of rainrates)

SST is the key controlling factor for Evaporation and Precipitation: budgets, variability and extremes.

Water budget is decreased in the coupled simulation Coupling most significant role is the redistribution of water at mesoscale

WRF-CORDEX-IPSL

Region: <u>South-America</u>

Related project: ANR PEPS (Peru Ecosystem Projection Scenarios)

Set-up:

400 800 1200160020002400280032003600400044004800

Simulations status:

- ERA-Interim Evaluation 1989-2008 finished
- Control IPSLCM5-MR1 1981-2000 in progress (10 years finished)
- RCP8.5 IPSLCM5-MR1 2081-2100 to be done

Scientific objectifs

1. Impact of the climate change on the wind-driven upwelling off the coast of Peru/Chile and on the regional ecosystem (work in progress)

- Using atmospheric flux from WRF to force a regional oceanic model ROMS

2. Evaluation of the dynamical and statistical methods for downscaling the upwelling favorable along-shore surface wind (work in progress)

- Statistical method (Goubanova et al. 2010) was used in previous studies to derive regional wind change from a CMIP3 CGCMs ensemble and to obtain wind forcing for ROMS (Echevin et al. 2011; Cambon et al. 2012)

3. A study of extreme temperature and precipitation over South America in global and regional models (work to be done) -collaboration with LMDZ-CORDEX-IPSL (L.Li) -looking for collaborations with other S.America groups!

Main problem

Coarse resolution of CGCM SST to force WRF !

-> narrow coastal band of upwelling cold water is not well resolved by CGCM -> this impact coastal atmospheric circulation in WRF (in particular surface wind and wind curl are not realistic) -> bias in atmospheric forcing for the regional oceanic model

Possible solutions?

a) Apply a statistical downscaling to CGCM SST in order to resolve fine-scale feature near the coast ?

b) Control run: forcing by *observed SST* RCP85: forcing by *observed SST* + CGCM SST anomalies between RCP8.5 and control runs ?

Any idea/suggestion are welcome !