

WRF SIMULATIONS OF WATER VAPOR IN OROGRAPHICALLY COMPLEX TERRAINS (CANARY ISLANDS)

Juan C. Pérez, Albano González, Juan P. Díaz, Francisco Expósito and David Taima-Hernández

ULL Univ

Universidad de La Laguna

Introduction and objectives

Data

Experimental Setup

Results

Conclusions

Water Vapor

High spatial and temporal variability

Influenced by large-scale and local processes

Affects human activities

Objectives

- Evaluates WRF skills to simulate water vapor
 - Integrated water vapor
 - Vertical profiles
- Sensitivity studies
 - Physical parameterizations
 - Analysis nudging
 - Diurnal analysis
- Forecast simulations

Introduction and objectives

Data

Experimental Setup

Results

Conclusions

- Three stations (GNSS network)
 - LPAL: 2153 masl
 - IZAN: 2367 masl-
 - MAS1: 160 masl

Data

- Radiosondes
 - Launched at Güímar: 105 masl

- Midnight oo:oo UTC
- Noon: 12:00 UTC

Introduction and objectives

- Data
- Experimental Setup
- Results
- Conclusions

Experimental Setup

- WRFv3.1.1
 - Two sets of experiments
 - Sensitivity studies
 - Initial and Boundary Conditions provided by analysis data (FNL), each 6 h.
 - Forecasts
 - Initial and Boundary Conditions provided by GFS forecast data

Land use and topography prescribed from USGS

Experimental Setup

Domains (2-way nesting)

DX: D1: 27 km D2: 9 km D3: 3 km

Cumulus: D1, D2: Grell D3: Resolved

Introduction and objectives

- Data
- Experimental Setup

Results

Conclusions

Sensitivity studies

Results

Name	Vert. Levels	Microphysics	Nudging			Positive	DDI	Land
			Dı	D2	D3	definite	PBL	surface
Eı	35	WDM6	А	В	0	Yes	YSU	Noah
E2	60	WDM6	А	В	0	Yes	YSU	Noah
E3	35	WSM6	А	В	0	Yes	YSU	Noah
E4	35	Thompson	А	В	0	Yes	YSU	Noah
E5	35	WDM6	А	А	В	Yes	YSU	Noah
E6	35	WDM6	0	0	0	Yes	YSU	Noah
E7	35	WDM6	А	В	0	no	YSU	Noah
E8	35	WDM6	А	В	0	Yes	MYJ	Noah
E9	35	WDM6	А	В	0	Yes	YSU	Pleim-Xu
E10	35	WDM6	А	В	0	Yes	YSU	RUC
E11	35	WDM6	Α	В	0	Yes	YSU	5-layera

PWV (mm)

Maspalomas

Experiment:

.....

15

September 2009

20

La Palma

25

30

10

11

b)

Results

September 2009

Results

2009 annual simulations (monthly reinitializated runs)

Experiment E1

Izaña

Results

Diurnal cycle of PWV

- Mainly local processes associated to diurnal variations
- Diurnal anomaly.
- $A_H = PWV_H \overline{PWV_D}$

$$\overline{PWV_D} = \frac{\sum_{H=0}^{23} PWV_H}{24}$$

- large-scale mechanisms are filtered by removing the daily average component and by averaging the anomalies over a large number of days.
 - Annual
 - Seasonal

Diurnal cycle of PWV

- Diurnal cycle of PWV
 Case study. Maspalomas
 Several factors analyzed:
 - Temperature
 - Moisture transport by local processes

Temperautre

- Diurnal cycle of PWV
 - Surface Sensible heat flux

New experiments for summer season

- Land surface model
 - 3 new simulations
 - RUC
 - Pleim-XuN
 - 5 layer diffusion
- Land cover
 - 2 new simulations varying soil category
 - Lava
 - Playa

No appreciables differences found

No appreciables differences found

- Sea surface temperature
 - NCEP Real Time Global sea surface temperature (RTG SST) (1/12° grid)

- Diurnal cycle of PWV
 - Sensible heat flux

New experiments for summer season

PBL Mellor-Yamada-Janjic

Water vapor forecast

- To evaluate nudging strategies
- 48 hours forecast runs for March, 2010.
- Initial and boundary conditions provided by GFS
- Same configuration as experiment E1
- Initial 12 hours are not considered (spin-up)
- Three nudging strategies
 - **1**. No nudging in any domain
 - 2. Nudging in the whole column in the outer domains D1 and D2
 - 3. Nudging above the PBL in D1 and D2
- Model outputs are compared with GPS for different forecast times (every 6 hours)

Water vapor forecast

Introduction and objectives

- Data
- Experimental Setup

Results

Conclusions

Conclusions

- WRF skills to simulate water vapor over Canary Islands are evaluated
 - In general, good agreements
 - Correlations ~ 0.95, CRMS ~ 2.2 mm
 - No appreciable sensitivity to parameterizations:
 - Microphysics, Land Surface, PBL, vertical levels
 - Nudging techniques provide better results
 - Annual simulation (2009) shows no dependence in the simulated PWV with the total amount.
 - PWV diurnal cycle is also analyzed:
 - Better representation in high elevation sites
 - Time shift observed in sea-level areas
 - Further studies performed (land surface model, land type, PBL, SST, horizontal resolution)

Conclusions

WRF skills to simulate water vapor over Canary Islands are evaluated

- PWV forecast study
 - WRF improves GFS forcing data
 - Correlations from 0.9 (12 hours forecast) to approx. 0.8 (48 hours)
 - RMSE around 2 mm (high elevation sites) and 3 mm (coastal areas)
 - No appreciable differences found for the different nudging runs.